A current-mode analog multiplier/divider based on CCCDTA

Montree Siripruchyanuna,\ast, Winai Jaiklabb

aDepartment of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s Institute of Technology, North Bangkok 10800, Thailand
bElectrical and Electronic Program, Faculty of Industrial Technology, Suan Sunandha Rajabhat University, 10300 Thailand

Received 22 January 2007; accepted 14 March 2007

Abstract

A novel simple current-mode analog multiplier/divider, based on current-controlled current-differencing transconductance amplifier (CCCDTA), is presented. The proposed circuit employs only single CCCDTA without any external passive element requirement and it can work as multiplier and divider without changing its topology. In addition, the proposed circuit can work as gain-controllable current amplifier. The circuit performances are depicted through PSPICE simulations. The simulated results show that: for \(\pm 1.5\) V power supply, the total harmonic distortion is about 0.1\%, the \(-3\) dB bandwidth is more than 26.94 MHz, maximum input range is about 100 \(\mu A\) and the output current is low sensitive to temperature variations.

\copyright 2007 Elsevier GmbH. All rights reserved.

Keywords: Analog; CCCDTA; Current mode; Divider; Multiplier

1. Introduction

Analog multiplier and divider are important building blocks in continuous-time signal processing. They can be found in many tasks: for instance, modulation, measurement, instrumentation, and control systems [1–3]. Many techniques to implement multiplier and divider have been presented as follows. The multiplier and divider based on translinear property of a bipolar junction transistor (BJT) [4], based on square-law characteristic of a CMOS [5], using switched capacitor (SC) [6]. Unfortunately, all techniques are suitable for working in voltage mode. They cannot be applied to employ in a current-mode signal-processing circuit, which are continually more popular in present due to several features such as larger dynamic range, higher signal bandwidth, greater linearity, simpler circuitry, and lower power consumption [7,8].

Realizations of the current-mode multipliers and dividers can be separated into two main techniques, which are continuous-time signal and sampled-time signal based on switched-capacitor or switched-current technique [9,10]. The latter method needs to inevitably employ clock signal to activate the circuit. Consequently, the problems are clock feed through, narrow bandwidth of output signal, and aliasing. In addition, it requires a precise clock-signal generated from a high-performance clock generator, thus it occupies a large area in monolithic chip. For continuous-time multipliers/dividers, the most techniques use square law of MOS device [3,11,12]. They confront several drawbacks, for instance, requiring matched elements of MOS devices, performing narrow frequency response, providing low dynamic range, depending on ambient temperature, and encountering high total harmonic distortion. Although, in the past, circuit techniques that employ OTAs to implement analog multiplier and divider have been proposed [13]. However, they function in voltage mode. Additionally, only multiplication functions are realized and the circuit bandwidths are only 2 MHz.
This work is organized to propose novel current-mode analog multiplier/divider using current-controlled current-differencing transconductance amplifiers (CCCDTA) as the active building block recently proposed in [14]. The features of proposed circuit are that: the proposed multiplier/divider can multiply and divide two current signals throughout two quadrants with a wide range of frequencies, without changing its topology, the circuit is insensitive to temperature, low harmonic distortion, low-power consumption and output current can be controlled via input bias current. Furthermore, not only working as a current multiplier/divider, the proposed circuit can function as a gain-controllable current amplifier. The performances of proposed circuit are illustrated by PSPICE simulation, they show good agreement as depicted.

2. Principle of operation

2.1. Basic concept of CCCDTA

Since the proposed circuit is based on CCCDTA, a brief review of CCCDTA is given in this section. Basically, the CCCDTA is composed of translinear elements, mixed loops, and complementary current mirrors. Generally, its properties are similar to the conventional CDTA, except that input voltages of CCCDTA are not zero and the CCCDTA has finite input resistances \(R_p \) and \(R_n \) at the \(p \) and \(n \) input terminals, respectively. These intrinsic resistances are equal and can be controlled by the bias current \((I_B) \) as shown in the following equation:

\[
\begin{bmatrix}
V_p \\
V_n \\
I_z \\
I_x
\end{bmatrix} = \begin{bmatrix}
R_p & 0 & 0 & 0 \\
0 & R_n & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 0 & \pm g_m
\end{bmatrix} \begin{bmatrix}
I_p \\
I_n \\
V_z \\
V_T
\end{bmatrix}.
\]

When

\[
R_p = R_n = \frac{V_T}{2I_B} \tag{2}
\]

and

\[
g_m = \frac{I_C}{2V_T}, \tag{3}
\]

where \(g_m \) is the transconductance gain of the CCCDTA and \(V_T \) is the thermal voltage. The symbol and the equivalent circuit of the CCCDTA are illustrated in Fig. 1(a) and (b), respectively.

2.2. Proposed current-mode analog multiplier/divider

The proposed multiplier/divider based on CCCDTA is shown in Fig. 2. It employs only single CCCDTA. From routine analysis and using the CCCDTA properties, we will get output current as

\[
I_O = \frac{I_A I_C}{8I_B}. \tag{4}
\]

From Eq. (4), it is clearly seen that \(I_O \) is a result of either, multiplying of \(I_A \) and \(I_C \), or dividing of \(I_A \) and \(I_B \). Due to being a positive value of \(I_A \) and \(I_C \), the proposed circuit can be a 2 quadrant multiplier/divider. In addition, if \(I_A \) is input current, the proposed circuit can work as current amplifier, which the magnitude of output current can be controlled by \(I_B \) or \(I_C \). Furthermore, the circuit is theoretically temperature insensitive owing to no term of \(V_T \).

2.3. Non-ideal case

In practice, the CCCDTA is possible to work with non-ideality. Its properties will change to

\[
I_z = \alpha_p I_p - \alpha_n I_n + \varepsilon_z \tag{5}
\]

and

\[
I_x = \beta g_m z V_z + \varepsilon_x, \tag{6}
\]

where \(\alpha_p, \alpha_n, \) and \(\beta \) are transferred error values deviated from one. While \(\varepsilon_z \) and \(\varepsilon_x \) are the offset currents at \(z \) and \(x \) terminals, respectively. By straightforward analysis of the internal construction of CCCDTA in Fig. 3, we will obtain the \(\alpha_p, \alpha_n \) and \(\varepsilon_z \) as

\[
\alpha_p = \frac{g_m 6g_m 12 + g_m 3g_m 18 + g_m 12g_m 18}{g_m 12g_m 18(g_m 6 + g_m 3 + g_m 5 + g_m 6)}.
\]

\[
\alpha_n = \frac{K_4 + K_5}{g_m 5 + g_m 2 + g_m 5 + g_m 5}, \tag{8}
\]

\[
\varepsilon_z = I_B \left[K_1 (g_m 6 - g_m 3) + (g_m 20 - g_m 21) K_2 + K_3 (g_m 2 - g_m 5) + K_4 - K_6 - K_5 + K_7 \right]. \tag{9}
\]
The parameters A and g_{m3} should be strictly considered to alleviate the effects. As a result, good design of CCCDTA slightly depends on temperature due to temperature dependence of the PR200N and NR200N bipolar transistors of ALA400 transistor array from AT&T [15] with ± 1.5 V power supply voltages. Internal construction of the CCCDTA in Fig. 3 was

\[K_1 = \frac{g_m 12 g_{m19} + g_m 3 g_{m13} g_{m18}}{g_{m12} g_{m18} (g_{m6} + g_{m3} + g_{m1} + g_{m6})}, \]

\[K_2 = \frac{g_{m12} g_{m19} g_{m20} + g_{m13} g_{m18} g_{m21}}{g_{m12} g_{m18} (g_{m20} + g_{m21} + g_{m20} + g_{m21})}, \]

\[K_3 = \frac{K_4 + K_5}{g_{m5} + g_{m2} + g_{m2} + g_{m5}}, \]

\[K_4 = \frac{g_{m5} g_{m19} g_{m17}}{g_{m18} (g_{m16} + g_{m17})}, \]

\[K_5 = \frac{g_{m2} g_{m11} g_{m13}}{g_{m12} (g_{m10} + g_{m11})}, \]

\[K_6 = \frac{g_{m19}}{g_{m18} (g_{m6} + g_{m20})}, \]

\[\text{and} \]

\[K_7 = \frac{g_{m13}}{g_{m12}}. \]

While β and ϵ_x are given by

\[\beta = \frac{g_{m25}}{B} \frac{(g_{m22} + g_{m22})(g_{m22} g_{m25} - g_{m22} B)}{AB g_{m22}}, \] (10)

\[\epsilon_x = I_B \frac{(g_{m22} g_{m25} - g_{m23} B)}{AB} \frac{A - g_{m23}}{A} \], (11)

where $A = g_{m22} + g_{m22} + g_{m23} + g_{m23}$ and $B = g_{m24} + g_{m24} + g_{m25}$.

If transistors are matched, which are $g_{m10} = g_{m11}, g_{m1} = g_{m2} = g_{m3} = g_{m4} = g_{m5} = g_{m5} = g_{m6} = g_{m20} = g_{m21}, g_{m12} = g_{m13}, g_{m2} = g_{m17}, g_{m2} = g_{m19}, g_{m24} = g_{m25}$ and $g_{m22} = g_{m23}$. The parameters $\beta, \epsilon_x \geq 0$.

In the case of non-ideal and brief consideration, the I_O is changed to

\[I_O = \frac{\beta x_n}{4(1 + x_p)} I_A \frac{I_C}{I_B} + \frac{\beta x_n}{4(1 + x_p)} I_C + \epsilon_x. \] (12)

From Eq. (12), we can see that the last two terms are offset currents. So, to reduce the offset current, the CCCDTA should be carefully designed to achieve these errors as low as possible. In addition, for the first term, these errors affect the magnitude of the output current. The magnitude output slightly depends on temperature due to temperature dependence of these errors. As a result, good design of CCCDTA should be strictly considered to alleviate the effects.

3. Simulation results and discussion

To prove the performances of the proposed circuit, the PSPICE simulation program was used for the examination. In the case of non-ideal and brief consideration, the output current is slightly depends on temperature due to temperature dependence of these errors. As a result, good design of CCCDTA should be strictly considered to alleviate the effects.
used in the simulations. Fig. 4(a) and (b) show the DC response characteristics of proposed circuit for multiplication and division, respectively, where \(I_B = 5 \mu A \). Fig. 5(a) shows the multiplied result in transient responses of the proposed circuit, where \(I_A \) and \(I_C \) were set to be a sinusoidal signal 20 \(\mu A \) with a 1 MHz and triangular signal 20 \(\mu A \) with a 500 kHz frequency, respectively. Fig. 5(b) shows dividing result of the proposed circuit, where \(I_A \) and \(I_C \) were set to be 40 \(\mu A \) and \(I_B \) was a triangular signal with frequency of 500 kHz. Furthermore, the claimed temperature insensitivities of the proposed circuit are confirmed by results of Fig. 6(a) and (b). Fig. 7(a) displays output signal versus input signal, where the proposed circuit functions as a current amplifier. The maximum bandwidth of the output current of 26.94 MHz is shown in Fig. 7(b).

4. Conclusion

The current-mode analog multiplier/divider has been proposed. It employs only single CCCDTA as active element without an external passive element. The simulation results confirm that the proposed circuit performs maximum power consumption of 1.13 mW at ±1.5 V power supplies. In addition, we found that the performances of the proposed multiplier/divider are very accurate even temperature variation is involved. As mentioned features, including a modern bipolar technology-based realization, it is very appropriate to realize the proposed multiplier/divider circuit in monolithic chip for use in battery-powered, portable electronic equipments such as wireless communication system devices or portable instrument devices.

References

Montree Siripruchyanun received the B. Tech. Ed. degree in electrical engineering from King Mongkut’s Institute of Technology North Bangkok (KMITNB), the M.Eng. and D.Eng. degree both in electrical engineering from King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand, in 1994, 2000, and 2004, respectively. He has been with Faculty of Technical Education, KMITNB since 1994. Presently, he also functions as Deputy Director of Science and Technology Research Center (STRC) and is with Department of Teacher Training in Electrical Engineering as an Assistant Professor, KMITNB. His research interests include analog-digital communications, analog signal processing, and analog-integrated circuit. He is a member of IEEE (USA), IEICE (Japan), and ECTI (Thailand).

Winal Jaikla received the B. Tech. Ed. degree in telecommunication engineering from King Mongkut’s Institute of Technology Ladkrabang, Thailand in 2002 and M. Tech. Ed. in electrical technology from King Mongkut’s Institute of Technology North Bangkok (KMITNB) in 2004. Now, he is working toward Ph.D. in Electrical Education at KMITNB. He has been with Electric and Electronic Program, Faculty of Industrial Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand since 2004. His research interests include electronic communications, analog signal processing, and analog-integrated circuit. He is a member of ECTI (Thailand).